In vivo feasibility case study for evaluating abdominal aortic aneurysm tissue properties and rupture potential using acoustic radiation force impulse imaging.
نویسندگان
چکیده
An abdominal aortic aneurysm (AAA) is defined as a permanent and irreversible localized dilatation of the abdominal aorta. A reliable, non-invasive method to assess the wall mechanics of an aneurysm may provide additional information regarding their susceptibility to rupture. Acoustic radiation force impulse (ARFI) imaging is a phenomenon associated with the propagation of acoustic waves in attenuating media. This study was a preliminary evaluation to explore the feasibility of using ARFI imaging to examine an AAA in vivo. A previously diagnosed in vivo aneurysm case study was imaged to demonstrate the viability of excitation of the abdominal aorta using ARFI imaging. Ex vivo experiments were used to assess an artificially induced aneurysm to establish its development and whether ARFI was able to capture the mechanical changes during artificial aneurysm formation. A combination of in vivo and ex vivo results demonstrated a proposed hypothesis of estimation of the tissue's stiffness properties. The study details a method for non-invasive rupture potential prediction of AAAs using patient-specific moduli to generate a physiological stiffness rupture potential index (PSRPI) of the AAA. Clinical feasibility of ARFI imaging as an additional surgical tool to interrogate AAAs was verified and methods to utilize this data as a diagnostic tool was demonstrated with the PSRPI.
منابع مشابه
Drug Therapy for Small Abdominal Aortic Aneurysm
Dear Editor,Abdominal aortic aneurysm is often asymptomatic, less recognized, and causes considerable mortality and morbidity, if missed. The incidence varies from country to country and the occurrence is influenced by modifiable (smoking, coronary heart disease, hypertension, dyslipidemia, and prolonged steroid therapy) and non-modifiable risk factors (increasing age, male gender, and positive...
متن کاملAcoustic radiation force impulse imaging of the abdomen: demonstration of feasibility and utility.
The feasibility of utilizing acoustic radiation force impulse (ARFI) imaging to assess the mechanical properties of abdominal tissues was investigated. The thermal safety of the technique was also evaluated through the use of finite element method models. ARFI imaging was shown to be capable of imaging abdominal tissues at clinically realistic depths. Correspondence between anatomical structure...
متن کاملManagement of anesthesia in a patient with ruptured abdominal aortic aneurysm: A case report
Introduction: Abdominal aortic aneurysm is a multifactorial condition which associated with aging and atherosclerosis. During aneurysm surgery, hypotension after aortic clamp removing occure commonly that require specific treatments. This case report showes administration of blood and hemodynamic control methods after aortic unclumping during aortic aneurysm surgery. Patient: A 75–years-o...
متن کاملLiver ablation guidance with acoustic radiation force impulse imaging: challenges and opportunities.
Previous studies have established the feasibility of monitoring radiofrequency (RF) ablation procedures with acoustic radiation force impulse (ARFI) imaging. However, questions remained regarding the utility of the technique in clinically realistic scenarios and at scanning depths associated with abdominal imaging in adults. We address several of these issues and detail recent progress towards ...
متن کاملIn Vivo Study of Transverse Carpal Ligament Stiffness Using Acoustic Radiation Force Impulse (ARFI) Imaging
The transverse carpal ligament (TCL) forms the volar boundary of the carpal tunnel and may provide mechanical constraint to the median nerve, leading to carpal tunnel syndrome. Therefore, the mechanical properties of the TCL are essential to better understand the etiology of carpal tunnel syndrome. The purpose of this study was to investigate the in vivo TCL stiffness using acoustic radiation f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the mechanical behavior of biomedical materials
دوره 4 3 شماره
صفحات -
تاریخ انتشار 2011